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1 Model Example Analogy 
Unobservable Qty Claim Freq θ Ultimate Loss U

Prior Distribution θ ~ Γ(α,β) U ~ gU(u)

Observable Qty Number of claims N Loss at nth report L

Probabilistic Model N | θ ~ Poisson(θ) L | U ~ U / Λ
where Λ = FTU*

Observation N = n L = l

Posterior Distribution θ ~ Γ(α+n,β+1) U ~ new gU(u)

Predictive Distribution N ~ Negative Binomial L ~ h(l)

* FTU=Factor-to-Ultimate
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What do we need to apply the model? 

– Prior distribution of ultimate losses
• Computation of aggregate losses now standard

– FFTs, Heckman-Meyers, Method of Moments
– There are no others...

– Distribution for FTUs using bootstrap
– Essential ingredient: joint distribution of U and FTU

g(λ, u) = gΛ(λ | U) gU(u)
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Prior for ultimate    U ~ gU(u)
Observed loss given ultimate  L | U ~ U / Λ
Distribution of FTU    Λ ~ gΛ(λ)
Conditional dist’n of FTU  Λ | U ~ gΛ(λ | U) 
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Parametric and Non-Parametric 
Distributions
– Predilection for parametric distributions
– Computers make non-parametric, numerical, discrete 

distributions easy to use
– Offer great flexibility: capture cluster points
– No tricky fitting problems
– Produced by cat models
– Easy to compute statistics, layers, etc.
– Appeal of parametric distributions driven by lack of 

powerful computers!
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4 Using Fast Fourier Transforms to 
Compute Aggregate Distributions
– Fast and efficient method
– Clearly explained in Wang [9]
– Easy to code in Excel
– Use VBA functions, not IMPRODUCT spreadsheet 

functions
– Can code FFT in VBA based on Numerical Recipies 

algorithms [6]
– Alternatively, can link to DLLs

• See Solomon [7] for method
• See Intel web page [4] for free DLLs

– FFT of real vector is conjugate symmetric
• Halves needed computations
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Prior Ultimate Loss Distribution

– Mean: $58.9M Freq: Negative Binomial
– CV: 0.168 Contagion ~ 0.02
– Skew: 0.307 Severity: 5 Param Pareto

1996 Year Prior Ultimate
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FFT generated aggregate 

Lognormal approximations 
fitted using 

method of moments
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1996 Year Prior Ultimate
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Favorite Method
– Lognormal link ratios

• Product of lognormals is lognormal
– No other reason?

Bootstrap Method
– Link ratios in triangle with n years data can be re-

sampled to give (n–1)! different FTUs 
• 9! =362,880; 17! = 355,687,428,096,000 

– Bootstrapping explained in Ostaszewski Forum 
article [5] and Efron and Tibshirani book [1]
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Advantages of Bootstrap
– Relies on available data
– Quick and easy to code
– No need to make questionable assumptions on 

link ratio distribution
– No need for complex curve fitting
– Method gives payout pattern and distribution of 

discount factors
– Produces confidence intervals around estimates
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Ah but…
– What about inflation and 

other unique historical 
episodes in data?

– What about correlation 
between first two link 
ratios?

– What about the re-
engineered claims 
department, changes in 
reserving, tort reform, social inflation, Y2K liability?

– No data, small triangle?

Try
– Triangle must be 

adjusted for perceived  
anomalies 

– Bootstrap techniques 
available to retain 
correlation structure; 
re-sample in pairs

– Same problems exist for 
traditional applications of 
triangles. Use same 
solutions!

– Combine triangles, use 
similar LOB, and other  
methods used for 
reserving

9
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Distribution of FTUs

– 18 years of auto liability paid loss experience 
– 24 month-to-ultimate factor
– 10,000  bootstrap replications

10

Dashed lines indicate 
mean, 5th and 95th 

percentiles
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Filters and Smoothing
– Bootstrap densities jagged and rough
– “Low pass” filter ideal for removing high frequency 

noise
– Filter is essentially a moving-average
– Filter, reverse, re-filter to preserve phase
– Filtering attenuates peaks
– Filtering may introduce negative values
– Can be made into a robust smoothing technique
– Free Bonus: learn how your CD player works!
– See Hamming [3] or Numerical Recipes [6] for 

more details
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Observed loss equal 

to expected

– $59M prior ultimate
– FTU = 8.09
– $7.3M observed at 24 

months
– Dotted lines illustrate these 

quantities

Observed loss higher 
than expected

– $12M at 24 months
– 59 / 12 = 4.9 < 8.1 
– Diagonal line moves down

for higher observed loss
– Easy visual assessment of 

“significance” of observed 
loss 
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$7M at 24 mths vs. $12M at 24 mths13
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Copulas and Association

– Copulas: multivariate uniform distributions
– For a continuous bivariate distribution H there 

exists a unique copula C so that 

H(u,v) = C(HU(u), HV(v))

– C(x,y) = xy corresponds to independent marginals
– Copulas capture association
– Variety of copulas available with different

properties
– See Wang [9] and Frees [2]
– Non-parametric measures of association

• Kendall’s tau and Spearman rank correlation



Frank Copula, τ=0.35
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Independent Positive Association
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Distribution of Observed Loss

– Important for DFA
– Bootstrap method gives needed distribution for run-

off conditional on observed losses
– Family of densities compatible and consistent with 

other model assumptions
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Loss Development and Credibility

$7M at 24 mths $12M at 24 mths
$59M prior ultimate $59M prior ultimate

17

BF estimate of ultimate, FTU=8.1
 Mean of posterior distribution
 Straight development ultimate
 Mean of posterior ultimate
 Prior ultimate

• Bayes estimate is mean of 
posterior distribution

• Bühlmann Credibility is best linear 
approximation to Bayes estimate

• Credibility of observation
given by slope / FTU
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Source: Taylor [8], 
working paper

Losses “are essentially 
those from an Austrial-
ian Auto Liability 
portfolio.”

18 Bolded 8.103 factor to 
ultimate corresponds to the 
FTU mentioned in slides

Correlation? 2-1 vs 3-2: 

y = -0.1332x + 2.2522
R2 = 0.0906

p=0.26
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Shape caused 
by observed 
loss beyond 
resolution of 
model
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Prior Aggregate TriangleCopula

Bootstrap

Bivariate Distribution of Loss & FTU

Posterior Aggregate Bayes Ultimate Predictive
Distribution
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What have we done? What can we do?

– Bootstrap from triangle to distribution of FTU
• Confidence intervals for FTUs
• Distribution of discount factors

– Combine with an prior aggregate (and copula) to 
get bivariate distribution of ultimate and FTU

– Bayes Theorem gives posterior aggregate
• Graphical demonstration of resolution of 

uncertainty 
• Applications: DFA, results analysis, reserving

– Mean of posterior gives “Bayesian” ultimates
• Interpolate between BF and link-ratio methods
• Reflect payout and underlying loss uncertainty 

in reserving process

24
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